Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
Sign in
Search
Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
GeoGebra
Home
Resources
Profile
Classroom
App Downloads
パップスの問題(放物線)
Author:
Bunryu Kamimura
Topic:
Parabola
パップスの問題
パップスは、 「一点からm+n本の直線に垂線を下ろして、m本に下した垂線の長さの積と、 n本に下した垂線の長さの積の比を一定ならしめるとき、その点の軌跡を求めよ。」 という問題を出した。 デカルトは、m=1、n=2の場合は放物線になることを座標を使って簡単に解いた。 これは放物線が二次関数になることを示したことになる。 パップスの問題はデカルトを座標へと導く指標だったのだ。 パップスには座標が見えていたのかもしれない。
GeoGebra
3本の直線と言うと空間座標がイメージされる。z=cxyという単純な曲面を示している。
GeoGebra
New Resources
対数螺旋
平均変化率
standingwave-reflection
カージオイド
小テスト
Discover Resources
meneraus
垂直二等分線の作図
わり算ファミリー
中2 P97 例7
てんかい2
ベー2ss65
Discover Topics
Fractal Geometry
Sphere
Pythagoras or Pythagorean Theorem
General Quadrilateral
Upper and Lower Sum or Riemann Sum