Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
Sign in
Search
Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
GeoGebra
Home
Resources
Profile
Classroom
App Downloads
パップスの問題(放物線)
Author:
Bunryu Kamimura
Topic:
Parabola
パップスの問題
パップスは、 「一点からm+n本の直線に垂線を下ろして、m本に下した垂線の長さの積と、 n本に下した垂線の長さの積の比を一定ならしめるとき、その点の軌跡を求めよ。」 という問題を出した。 デカルトは、m=1、n=2の場合は放物線になることを座標を使って簡単に解いた。 これは放物線が二次関数になることを示したことになる。 パップスの問題はデカルトを座標へと導く指標だったのだ。 パップスには座標が見えていたのかもしれない。
GeoGebra
3本の直線と言うと空間座標がイメージされる。z=cxyという単純な曲面を示している。
GeoGebra
New Resources
小テスト
standingwave
目で見る立方体の2等分
二次曲線と離心率
円の伸開線
Discover Resources
日本数式処理学会第25回大会 2015年福岡県
等比級数の和
Total derivative
gradation tringle slower
一次関数(動点と三角形の面積) のコピー
Discover Topics
Indefinite Integral
Bar Chart or Bar Graph
Intersection
Complex Numbers
Upper and Lower Sum or Riemann Sum