GeoGebra
  • Create Lesson
GeoGebra
  • Home
  • News Feed
  • Resources
  • Profile
  • People
  • Classroom
  • App Downloads
About GeoGebra
Contact us: office@geogebra.org
Terms of Service – Privacy – License

© 2022 GeoGebra

Eigenvalue, eigenvector-geometric interpretation in R2

Author:
kupanpal
u is an eigenvector of matrix A if its image through A (i.e. A*u), is collinear with u. The corresponding eigenvalue -lambda- is the ratio of the (components of the) vectors Au and u. Because the vectors are collinear, the absolute value of lambda measures the ratio between the lengths of the vectors Au and u.

New Resources

  • Demo: dashed trace
  • Othographic Views of a Solid
  • Music Box with Rotating Ballerina
  • Rotation of spheres
  • Demo: Applet communication using JavaScript

Discover Resources

  • Simple Angle at the Centre (Reflex Case)
  • Trig-Sound-Light
  • UCSS Secondary Math I Unit 2 Lesson 5
  • PMC 2009-10 Q3
  • Use area of triangles to prove cosine formula

Discover Topics

  • Conic Sections
  • Cube
  • Circumcircle or Circumscribed Circle
  • Planes
  • Rhombus

GeoGebra

  • About
  • Partners
  • GeoGebra on Tests
  • News Feed
  • App Downloads

Apps

  • Calculator Suite
  • Graphing Calculator
  • 3D Calculator
  • CAS Calculator
  • Scientific Calculator

Resources

  • Classroom Resources
  • Learn GeoGebra
  • Classroom
  • Geometry
  • Notes
  • Terms of Service Privacy License
  • Facebook Twitter YouTube