The GOLD point is chosen at random inside the equilateral triangle. The red, blue and green segments are lines drawn from the GOLD point and perpendicular to each of the sides. Their lengths vary in size as you move the GOLD point from place to place inside the triangle.
However, the sum of their lengths is constant.
What is the sum equal to? Why? Can you prove it?
Would a similar thing be true in a square? Why or why not?
What about other regular polygons with an odd number of sides?
with an even number of sides?