Google Classroom
GeoGebraGeoGebra Classroom

Malfatti-Problem

Das Malfatti-Problem

Das Malfatti-Problem nach Gianfrancesco Malfatti benannt, bezog sich ursprünglich auf eine Aufgabe aus der Stereotomie deren vermeintliche Lösung Malfatti 1802 fand und 1803 in der Memoria di Matematica e Fisica della Società Italiana delle Scienze in seinem Artikel Memoria sopra un problema stereotomico veröffentlichte. Am Anfang seines Artikels formuliert Malfatti die Aufgabenstellung. Freie Übersetzung: Bei einem geraden dreieckigen Prisma aus irgendeinem Material, zum Beispiel Marmor, werden daraus drei [kreisförmige] Zylinder zugeschnitten mit der gleichen Höhe wie das Prisma, aber mit dem höchstmöglichen Gesamtvolumen, das heißt, mit dem geringstmöglichen Materialabfall des Prisma-Volumens. (Quelle: Wikipedia) Die sogenannten Malfatti-Kreise haben, zusammen mit den benachbarten Kreisen und den Dreieckseiten, insgesamt neun Berührungspunkte. Die konstruktive Schwierigkeit in dieser Darstellung liegt darin, dem Dreieck die Ellipsen korrekt einzubeschreiben. Siehe hierzu Ellipse im schiefen Dreieck.