Rotación respecto a una recta
Explicación
El objeto es obtener la matriz en base canónica de la transformación lineal que rota un ángulo t al rededor de la recta .
Lo primero que se necesita para hallar la transformación lineal es una BON de que contenga al vector director de la recta. Sea U={ } dicha BON, donde es el vector director.
Para hallar voy a buscar cualquier vector que sea ortogonal a , por ejemplo: .
Por último, voy a obtener para completar una terna derecha utilizando el producto vectorial. Al hacer no necesito normalizarlo, ya que .
Una vez obtenida la BON U, la matriz de la transformación lineal que rota sobre el eje midiendo los ángulos de hacia . Luego utilizando los cambios de base se obtiene .